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:. INTRODUCTION

This paper deals with the identification/approximation of a

linear system by poles and residues from a measured finite length

input-output record of the system. The objective of this paper

is threefold:

1) to illustrate that several different formulat: ns for

characterizing the impulse response of a system yield the same set

of poles,

2) to show how different formulations regularize the ill-posed

system identification problem, and

3) to demonstrate that relatively stable, consistent and re-

liable results in the identification of a system by poles and resi-

dues from a finite length input-output record can be achieved by

the pencil-of-functions method.

Recognition u.hat different formulations yield the same poles

is not widely appreciated. In this paper it is shown that formu-

lations based upon different assumptions result in identical sets

of analysis equations. For zample, it is not at all obvious that

Prony's method (as derived by most numerical analysis formultions)

may be interpreted in terms of predicting each value of data and
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therefore, is a form of digital Wiener filter. Markel [1] and Markel

and Gray [2] did recognize the fact that identical analysis equations

can be obtained by several different techniques.

In our discussion of the .7arious approaches, only references

which are directly relevant are noted. No attempt has been made

to cite the earliest sources. In many cases, additional references

may be found in papers mentioned.

The problem of interest is to identif7/approximate the transfer

function of a system by its poles and residues when the noise contaminated

input and output are specified. The signal and noise are considered to

be stationary processes. When time limited signals are involved,

the problem is converted to an equivalent stationary problem by con-

volving the time limited signal with white noise of unit power [3].

In the second section the classical method for extracting the signal

from noise is discussed. This is the Wiener-Kolmogoroff theory (4].

The digital form of the Wiener-Hopf equation is derived. Topics

associated with Wiener filters are also presented. They include in-

verse filter design, linear prediction, predictive deconvolution (or

spiking) filter design, recursive filter design and Kalman filtering.

1 J.D. Markel, "Formant Trajectory Estimation from a Linear Least-Square
Inverse Filter Forr ulation," SCRL-Monograph 7, Speech Communizations
Research Laboratory, Inc., Santa Barbara, October 1971.

2 J.D. Markel and A.H. Gray, "Linear Prediction of Speech," Springer-
Verlag: Berlin.

3.E.A. Robinson and S. Traital,"Principles of Digital Wiener Filtering,"
Geophysical Prospecting, September 1967, pp. 311-333.

4 N. Levinson, "The Wiener RMS Error Criterion in Filter Design and
Prediction," Journal of Mathematics and Physics, 1947 V. 5, pp.
261-278.

6



Both the popularly known covariance and autocorrelation methods are

derived from the Wiener filter theory.

In the third section the various well-posed stochastic exten-

sions of an ill-posed system identification/approximation problem

are described. They include t.he maximum likelihood estimation

theory, the minimum predictor error variance and the maximum entropy

spectral analysis. it is demonstrated that identical analysis

equations for parametric modeling of the system can be obtained.

The fourth section provides Prony's method in various forms.

In particular, when a semi-least squares approach is applied to Prony's

method, both the autocorrelation and the covariance method appar

as special cases. Thus it is also a form of a digital Wiener filter.

The second objective of this paper is discussed in the fifth

section. This section discusses the various concepts if ill-posed

and well-posed problems in system identification. it is shown how

the different techniques regularize the ill-posed system identifica-

tion problem by introducing further limitations on the solution.

Fiually, it is shown how the pencil-'if-functions method radically

differs from the other formulations.

Finally, the third objective is demonstrated in section VI where

results are presented to demonstrate the claim that relatively stable,

reliable and consistent results are obtained for the location of the

poles by the pencil-of-function method.

7



Ii. WIENER FILTER THEORY

Kolmogoroff (1942) and Wiener (1943) were the first to present

a unified theory on extrapolation, interpolation and smoothing of

stationary time series. The linear filter which performs the desired

task is obtained by the solution of an integral equation known as the

Wiener-Hopf ecuation [4]. For sampled data systems, the integral

form of the Wiener-Hopf equation reduces to a finite sum. The present

treatment describes how Wiener's concepts can be applied to the identi-

fication/approximation of linear systems. The basic model for this

process consists of an input signal, a desired output signal and an

actual output signal. If one minimizes the mean-squared error between

the desired output signal and the actual output signal, it becomes

possible to solve for the optimum system commonly known as the "Wiener"

filter. The fundamental assumption underlying the procedure is that

all processes are stationary.

A stationary time series is one whose statistical properties

are time invariant. In particular, the statistics of the time series

are independent of time. By definition, a stationary time series

must be of infinite duration. However, in an actual experiment, we

observe a times series over a finite interval. In order to apply the

concepts of Wiener filtering, the finite length time series is convolved

with a white noise series of unit power, to yield a stationary time series

[3]. Moreover, in actual measurements only one waveform is often available
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for computing various statistics. Thus ensemble averages are frequently

evaluated by means of appropriate time averages. This is valid only

when the random processes are ergodic.

The concept of Wiener filtering is well known but is included

here for completeness. The fundamental elements of digital Wiener

filtering are summarized in Figure 1 for the sampled data problem.

Sampled Data Filter Actual
Input f t Output

X V
xt f09fl ..... fM-1 It:

t 0,1,..., K-1 Error

Desired Output Signal

d
t

t - 0,i,2,...,K+M-2

Figure 1. Principles cf Wiener Filtering.

Given the input sequence xt and a desired output sequence dt, the problem

is to find the linear filter coefficients ft. whose output sequence

x * f [* denotes convolution] yields a minimum mean-squared error

estimate of dt. If E {.} denotes the expected value, then the error

I - E{(dt - y ) 2  (2.1)

is to be minimized.

In this case an M-length filter ft - {f0'flI ... fM-1 converts,

in a least error energy, sense a K-length input xt - {X0,1l,...,"K-11

9



into a K+M- length sequence y. which approximates the desired sequence

dt .dO, dl$ .... I +M2. The actual output is obtained as

-YOJY'9 " YK+M- 2;

M-1
, f x • 2.2)

The problem of making the actual output y as close as possible to the

desired output d can be interpreted in terms of minimizing the error energy
t

2M -I 1E{(d - v (d - 2 (2.3)

'=0

The error is minimized by evaluating the partial derivatives of I with

respect to f- and equating them to zero. This results in a set of

equations

dl - M-l
=i Et2(dt f x (-x -):d- -0 fLt-T)

M-1
-2E{d x I + 2 T f E~x X

S0 j t-- t-j

= 0 , for j - 0,1,2, ...,M-1 (2.4)

The unknown filter coefficients are obtained by solving the followring

set of simultaneous equations.

M-1
Sf E{x x E{d xt J)

-7O7 t-T t-J t t

for j - 0,1, ..., M-1 (2.5)

In order to solve the above equations, it is necessary to compute

the expected values in Equation (2.5). By assuming that the ensemble

10



averages can be evaluated in terms of time averages, one obtains [3'

1 K- 1
x__x _j- , x x t - (.6)

(in the covariance method)

K-l M

K " x -x

t-O
1 K-! T-J 1- 1
1 K-'-j(2.7), [ xtxt+1,--j (- i"

t-0

(in the aurocorrelarion method)

Similarly

K-iE{d x . -1 d x

t t-Y K- t x -j
t-M

(in the covariance method)

K-I+M
t xt7 j (2.9)

t-O

(in the autocorrelation method)

It is important to stress that the terms "covariance" and "autocorre-

larion" are not based upon the standard usage of the terms as occur

in the theory of stochastic processes. Rather, we follow the usage

which is quite prevalent in the speech processing literature [5).

The following discussion is intended to clarify their interpretation.

It is clear that the covariance definition given by (2.6) yield

an unbiased estimate since

5 J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. rEr7
Vol. 63, No. 4, April 1975, pp. 561-580.
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K-I

K-1

"- E'[x x.""Ex x ..
t=M t-7 -

On the other hand, the auzocorrelation definition given by (.7)

results in a biased estimate since

ZEZx _x - xx

-=0K x - K tS t=O ., -1 - j

Since (T-J) < M, it is interesting to note that the bias is negligible

when M (the order of the filter) is much less than K. The bias is

significant, however, when K is only slightly larger than 1. This

explains why a large number of data points (K >> M) is necessary for

unbiased spectral estimation when using the autocorrelation function

to obtain the power spectral density.

Because the covariance method gives an unbiased estimate, it

might be assumed that it is a better estimate. However, the biased

estimate provided by the autocorrelation method is often pre-ferable.

As an example consider the zero mean four data point sequence (4, -2,

-1, -1) and M - 2. Using the unbiased estimator, the expected value-s

are C2 0 , CI  - 1.5, C' - -1, C' -2. In contrast, the biased

estimator results in r (0) , 5.5, r (1) -1.25, r(2 ) - -0.5, r(3 )  -1.0.

Note that C'O is less than CI whereas r(0) is guaranteed to be greater

00 1
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than r ror7 > 0

Continuing vith our development, the discrete Wiener-Hopf equa-

zion presented in Z2.5' can be -written in the followinz =at.rix form

for the covariance method

where (C,,] is a square matrix whose e-lements are given as

K-1.

[F is a column matrix consisting of the M. unknown filter coefficients

op IV and [D Iis a colun~ matrtx whose elements are given

K-1
D4 d tx t (2.12)

For the autocorre2.ation method, the unknown filter coefficients are

obtained from the solution of the matrix equation

[RiiIj rF. - (DJ ( x 2. 13)

where [Ri . i a square matrix whose elements are given as

K-l+Mi YK-- I -
Ru. - ix .= x t

f- t t t +I-il (2.14)

and [D is a colum matrix defined by (12).

Interestingly, most of the formulations for the. solution of an

unkown linear filter lead to analysis equations which can be formu-

lated either in terms of the autocorrelation matrix equations (2.13)

or in terms of the covariance matrix equations (2.10).
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i: is important :o note that the Wiener filter is not always

realizable as a causal rational function (in terms of poles and zeros).

As a result, the Wiener filter is, in general, an infinite order filter.

'When the order of the filter is specified a priori, the resulzing fil-

ter may no longer be optimum.

Various forms of the Wiener filter have appeared under different

names and have been used in various geophysical, speech processing,

and digital signal processing applications. Next, various modifica-

t:ions of the Wiener filter are presented.

2.1. Inverse Filter Formulation

The inverse filter attempts to transform the input signal into

an impulse [6]. Assume that the input sequerce x is transformed tot

an impulse of area C by an all-zero filter of the form

M-1
F(z) - 7 f~z , with f0  1 (2.15)

i-0

In terms of Figure 1, the desired waveform d is an impulse of area C.t

It follows that the coefficients of the filter should be chosen such

that

M-I
I f x Cn1 (2.,16)

where 6t = . for t - 0 and zero otherwise. Multiplication of both

6 J.D. Markel, "Digital Inverse Filtering - A New Tool for Formant
Trajectory Estimation," IEEE Trans. on Audio and Electroacoustics,
Vol. AU-18, No. 2, June 1970, pp. 137-141.
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sides by x_ and summing : from k :o K-!-L, one obtains

M- K +.Z0, k > 0

70 k (2.17)

7-0 r-:k tx, k-0

Since x. is zero for j > 0, the unknown coefficients f. for - 1,2,

M-1 are obtained from the solution of the following equations

.- i K-lI £

Sf [ ," x x 0 (2.18)

T0O t=K

for J - 1,2,..., M-I.

For k - M and Z - 0, the above equations reduce to that of the covariance

equations as in (2.10). This is because

K-i
t-7 t t-j (2.19)t:M

For k - 0 and Z - M, equation (2.18) reduces to that of the auto-

correlation equations. I the input signal is approximated by an all-

pole model the poles of the input signal are obtained from the zeros

of F(z) i.e. from the solution of the polynomial equations
M-i

z 0. (2.20)
r-O

In particular, if (z-). is the ith root of the above equation (2.20),

then the ith pole is equal to £n[(z-l)i.

2.2 Linear Prediction

The term "linear Prediction" was first used by Wiener it his

classic work on prediction of stationary time series. Since its publi-

cation, it has found wide application in the determination of all-vole

15



models for the processing of speech signals [5].

The basic philosophy here is to take a part of the sampled wave-

form (say the first M-i points from K data points) and predict the

next data point on the waveform by proper choice of the predictor co-

efficients a.. The linear predictor of step size one predicts the

Mth data point of the waveform when a (N-1) order predictor filter is

chosen. In the time domain, the predicted sample i is given by

M-i

i-i

where (-al,-a 2 -a 3 .... ,-a. ) are the preaictor coefficients. Assuming

the signal spectrum is to be modelled by an all-pole model, the co-

efficients ai are the negative of the values of fi presented in (2.15). A

(M-1) order linear predictor thus requires a linear combination of the

previous (M-1) samples. The error is then given by

M-i
- 2M + -_ aiz i Ix.

i-i

M-I

- - i ai-i with a 0 W -i (2.21)
iwO

When (K-I+Z) different data points are predicted, the total squared

error is defined by

K-K-I+£ M-x1- 2 [et] - [[ aixt i
t-k t-k i-0

M-i M-1 K-I+£
-0 J-0 aaj t x- x

.M-I M-1 K-I+z
i- i- f t x tit . (2.22)i-O J-0 i J 'tIk -x-

Minimization of I, with respect to the set of the filter coefficients

leads to a set of simultaneous equations given by

16



M-1 K- 1-Z7 f , xx_ t (2.23)

i-0 tk k

for j - 1, 2 . - 1, from which the unknown filter coefficients

f are obtained. When k - M and Z a 0, this amounts to minimization-i

of the error only over data points of the waveform from M to K - 1.

When k - 0 and Z. M, this implies minimization over the entire wave-

form. Equations (2.23) are identical to the set of equations (2.19)

obtained in the case of the inverse filter formulation in the previous

section.

Linear prediction is thus equivalent to an all-pole model for

the spectrum of the input x . The poles for this model are again

obtained from the solution of the polynomial equation

M-1 -
[ f.z -0.

Thus if xt represents the measured impulse response of the

system, the set of poles obtained by linear prediction can be interpreted

so as to parameterize the system in terms of an all-pole model.

2.3 Predictive Deconvolution or Spiking Filter Design

The general linear filtering problem involves the input x, the

impulse response ht and the output yt. When .t is desirable to evalu-

ate ht given xt and yt, the problem is referred to as deconvolution.

In this sense the inverse filter problem discussed in section 2.1 is

a deconvolution problem. Predictive deconvolution refers to the

case in which the output yt is assumed to be a delayed impulse

17



such that

M-1
7 fx , * (2.24)

"t-T~ t-Oa-1

The unknown filter coefficients f can be pursued in a manner anala-

gous to the inverse filter approach by assuming the input to be re-

presented as an all-pole model. However, we prefer to show that the

filter coefficients can also be determined by interpreting the prob-

lem as a prediction problem. It is in this sense that the term pre-

dictive deconvolution is used [7].

Introduce the change of variables t - Ol+ S in equation (2.24).

The resulting equation is

M-I
7 f x (2.25)

t-~O T A4-a-7-1

Next, assume the filter coefficients to be given by

a-l zeros

(-,,, ... ,0,-a 1 ,-a2, ... , -aM 1 ) (2.26)

The upper limit on the summation is now given by M + a - 2. Equation

(2.25) can now be written as

M+a-2 M-1
xt+C-1 Z+ Z fX +xTI = x+ 1 - [ a x

T-l T t-T

a o~t  (2.27)

If the estimate of x t+a 1 is assumed to be given by Rt+a-1' then

M-1
xt+a-1 T l aYxt- (2.28)

and of can be interpreted as the error of the estimate.t

7 K.L. Peacock and S. Treital, "Predictive Deconvolution: Theory and
Practice," Geophysics, Vol. 34, No. 2, April 1969, pp. 135-169.

18



If the total squared error is minimized as was done for :he

linear prediction approach in section 2.2, a set of equations is ob-

tained for the filter coefficients. When a - 1, these equations re-

duce to the same equations as were obtained in (2.23)

2.4 Recursive Filter Design

Recursive filters are often used in digital filter design [8-12].

With respect to Fig. 1, the spectral estimation problem is now posed

in the following manner. Assume the filter input is the impulse ft

Let the filter impulse response be determined so as to approximate

the data sequence in a minimum mean squared error sense. If x
t

is the input to the filter and y is the output, then they are

related by

M-I L-1
Ia kyt-k -Z brxt-r

k-O r0

Application of the z-transform to both sides yields

8 A. Oppenheim and R. Shaefer, Digital Signal Processing. Englewood
Cliffs, NJ: Prentice Hall, 1975.

9 J.L. Shanks, "Recursion Filter for Digital Processing," Geophysics,
Vol. =I, No. 1, February 1967, pp. 33-51.

10 D.L. Fletcher and C.N. Weygandt, "A Digital Method of Transfer Func-
tion Calculation," IEEE Trans. on Circuit Theory, Jan. 1971, pp. 185-187.

11 C.S. Burrus and T.W. Parks, "Time Domain Design of Recursive Digital
Filters," IEEE Trans. on Audio and Electroacoustics, Vol. AU-18,
No. 2, June 1970, pp. 137-141.

12 S. Treital and E.A. Robinson, "The Design of High Resolution Digital
Filters," IEEE Trans. on Geoscience Electronics, Vol. GE-4, No. 1,
June 1966, pp. 25-38.
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k-i L-

k-O r-O

L-J.
or T zrb br

F(z) Y(z) _rO B(z)X(z) M-I -k "A(z. (2.29)

k 0akzk- 0

Therefore, a recursive filter has a transfer function which is

expressed as a ratio of two polynomials of the z-transform variable.

The objective here is to synthesize the filter from the given impulse

response of the system. It is important to note that, unlike the

previous three types of filters, this is not an all-pole filter but

a pole-zero model. In other words, given some desired filter operator

D(z) (which is the transfer function of a desired system having the

impulse response d ), we require the polynomials A(z) and B(z) of

the filter

F(z) - B(z) (2.30)

A(z)

such that

F(z) D(z) - d 0 + d1 z
- 1 + d 2z - 2 + ... + dKlz (2.31)

A technique for determining A(z) and B(z) is outlined next.

a - 1 - 2 +-A (z) - 1 + . + a z . ... a.~ ZC . 2
+a~ - +..a z1  (2.32)

and

B(z) - b0 + bz
1 -I - b 2 2-2 + + bLlz- L+l (2.33)

where M and L are arbitrary numbers which fix the number of poles

and zeros respectively for the filter. Also divide B(z) by A(z)

so as to obtain the infinite series

-i -2F(z) - f0 + f z  + f 2  
z  +

Since F(z) A(z) - B(z), it follows that

20



+ - b +b a,--2 b z +,.

b0 +b1 z 1+b2 z +0L-1 L l

Since multiplication of z-transforms is equivalent to convolution of

the discrete time series, the series of btcoefficients is equal to

the convolution of the f tcoefficients with the a t coefffcients. Or

equivalently,

M-1
bt 7 a ftJ

By assumpti.on, a- 1. Therefore,

M- 1
f t b - I a jf j~ J-1

As b t- 0 for t > L 'from equation (2.33)), one may write

M-1
f t. - a f ,- for t > L .(2.34)

By assuming the approximation in (2.31) is valid, the coefficients

ftapproximate the coefficients d t for t > L. Equation (2.34) may

then be approximated by

M-1

Jt-1

for t - L + 1, L + 2, ... , K - 1 (2.35)

The error in (2.35) is given by

M-1

et Wd t+ I a dt1
1-1

I~ a dt ; ;since a 1l

J.0

for t -, + 1, L + 2, ... , K - 1 (2.36)

6w. 
-------

21



The a. coefficients are chosen in such a way that the mean-squared

error is minimized. In particular,

K- 2 K-i M-i
I= el = ad -(Z.37)

tuL+i t-Lr J;0

is minimized. By differentiating I of equation (2.37) with respect :c

a, and equating the derivatives to zero, a set of simultaneous equa-
J

tions is obtained. They are given by

.M-1 K-1N-i a[ K-i d jdtk) - 0 (2.38)

j-Oj t-L+l

for k - 1,2, ... ,M-i.

For a realizable filter the numerator polynomial is generally one

degree lower than the denominator polynomial (if the poles are simple).

Thus

L + 1 - M.

-Hence, (2.38) reduces to

M-i K-i
: aj[ tM dt_jdt-k] - 0 (2.39)

which is equivalent to the covariance equations as given by (2.10). The

right side of (2.10) is zero because

K-I
Di - t 6 - 0 for j - 1, 2, ... , M-1.t-M -

The poles for the filter are then obtained by the solution of the poly-

nomial equation

Hw-i

a.z- 0.

It was shown previously that the inverse filter, assuming an

all-pole model for the signal spectrum, is also equivalent to (2.10).

We conclude therefore that the poles for an all-pole model correspond

to the identical set of poles for a pole zero model for the

22



same order filter.

Next the residues at the poles (or equivalently, the numerator

polynomial) can be obtained by minimizing the mean-squared error

given by 7 ft - d r
t

It is interesting to note that when the numerator polynomial is

realized directly in the form presented in (2.33), the problem re-

duces to the case of the Pade approximation [13]. Mathematically,

Pade approximation results in an approximation of D(z) by F(z) such

that the seminorm

IID(z) - F(z) I - ID(l) - F(1)1 + 1D 1(1) - F (1)1

+ ... ID L+M-l(1) - F L+M-(1)1 (2.40)

is made zero. Here D k(1) represent the k th derivative of D(z) evalu-

ated on the unit circle.

2.5 Kalman Filter Theory

Underlying Wiener filter design is the so-called Wiener-Hopf integral

equation, its solution through spectral factorization, and the practi-

cal problem of synthesizing the theoretically optimal filter from its

impulse response. The normal Wiener filter is derived from the Weiner-

Hopf equation and in general this equation can be solved only in the

steady state, i.e. when the observation interval is semi-infinite. The

contribution of Kalman was recognition of the fact that the integral

13 R.N. McDonough, "Representation and Analysis of Signals, Part XV -

Matched Exponents for the Representation of Signals," Johns Hopkins
University, April 1963.
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equation could be converted into a nonlinear differential equation

whose solution contains all the necessary information for design of

the optimal filter. The problem of spectral factorization in the

Viener filter is analagous to the requirement for solving M("f l)/2

coupled nonlinear algebraic equations in the 1-order Kalman filter.

These equations can be solved numerically for transient type problems,

where data is available only for a finite interval. This, in general,

results in the Kalman filters being time-variant . However, in the

steady-state the Kalman filter reduces to the time invariant Wiener

filter [141. The pre . ntation by Sorensen [15) expresses the results

of Kalman filter theory in a way that makes this comparison easier.

The problem involves estimating a signal{a ),from measured datan

{do, dI .... d If the estimate is computed as a linear combi-
I K-l'

nation of the dn, then

M-1
Sn M Aid i  C2.41)

i-0

The M coefficients Ai are chosen in such a way that the mean-squared

error,

I - E((s - T (s - ^M.J (Z.42)
-n -n n j-n1

is minimized. Here T denotes the transpose of the row vector (s - n)

This criterion is satisfied when the error in the estimate s is
"n

orthogonal to the measured data, or

E[(s - . )d.] - 0, for i M0,,..., 1-1 (2.43)

14 A. Gelb, "Applied Optimal Estimation," MIT Press, 1974.

15 H.W. Sorensen, "Least-squares Estimation from Gauss to Kalman,"
IEEE Spectrum, July 1970, pp. 63-68.
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Expressed in a different way

M-1
E[s n 1 = A [d i j foriO0,...,M-l. (2.4

i-O

However, the matrix inversion that is required becomes compuzationally

imractical when M is large. Wiener and Kolmogoroff assumed an infinite

amount of data (that is, the lower limit of the sumation is -= rather

than zero). Eq (2.43) is then the discrete form of the Wiener-Ropf

equation which was solved using spectral factorization.

The basic difference between Wiener-Kolmogoroff theory and the

Kalman filter theory is how equation (2.44) is solved. In 1955 J.W.Follin

suggested a recursive approach to solve (2.44). It is clear (see reference

15. p. 65) that Follin's work provided a direct stimulus for the work of

Richard Bucy, which led to his subsequent collaboration with Kalmar in

the total development of the "state space" approach for obtaining the

filter equations.

2.6 Summary

As outlined above all forms of the digital Wiener filter lead

either to the covariance or the autocorrelation equations. It is

also interesting that the same set of poles is obtained whether one

models the signal as an all-pole model or as a pole-zero model.
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:11. STOCHASTIC .E-HODS AFPED TO

SYSTEM. IDENTIFICATION

Three different stocdastic methods used in spectral estimation

are presented in this section. They are maximum likelihood estimation,

minimum predictor error variance estimation, and maxfimum entropy

spectral analysis. All three models are considered as all-pole models.

These methods have no relationship with discrete Wiener filtering

theory. The methods presented in this section start w-zh completely

different assumptions but finally yield the ideLtical set of either

covariance or autocorrelation equations which characterize the system

to be identified from the-measured impulse response.

In these methods it is assumed that the data samples are part

of a random process. The problem is to choose the parameters of the

system impluse response so as to make the probability of occurence of

the actual observation most likely. In other words, the system para-

meters are chosen in such a way that the probability density function

defining the parameters is maximized.

3.1 Maximum Likelihood Estimation Theory

In this approach the measured impulse response of the system is

considered as a segment of a random process. it is further assumed

that the impulse response can be generated by passing an uncorrelated

noise sequence ;et through an all-pole model of the form
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7 z

Next the random process ;e_" is assumed to be Gaussian with

zero mean and variance -. Thus,
e

E-e =0 and e e i.c (3.2)
-Ie

As the measured impulse response xt, t - 0, 1 ... , K-I has been

assumed to be generated by passing the noise sequence ,e t through the

all-pole model, it follows that

M-1
f .x e. (3.3)

From (3.2) and (3.3) it is clear that the sequence x is Gauss'an wizth
t

zero mean and a cross-correlation defined by

E[xixJ] - gi-J" (3.1)

This correlation sequence gi-i would then be a function of the system

parameters fi' i - 0, ., ... , N-1 and c. Since x is Gaussian, a

Gaussian multivariate probability density function is defined for the

sequence of random variables x 0 ,x I ... , x_ 1 . The maximum likelihood

theory assumes that the parameter values which make the measured ob-

servation of the impulse response most likely are the same values

which maximize the Joint probability density function of xi, - 0,

1, ... , K-1. This can be achieved by differentiating the density

function with each of the unknown variables, fl, f2' "' f and 72
'21 e

and then setting the first partial derivative equal to zero. The
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solutions of :he set of equations :hen yield the values for the unknouT.

parameters. Even though the procedure is conceptually simple, the set

of equations becomes extremely nonlinear for M greater than Z and no

exact solution for this problem exists [2].

However, Itakura and Saito [16,17] solved the maximum likelihood

problem by making some additional assumptions. First, the number of

data points K is made much greater than M, the order of the filter

(i.e., K >> M). Second, the joint probazility density function for

:he sequence x0 ,x!,x2 , ... , x 1 is approximated by

2-K/ (32

where
K-l+ M M- 1  2" [.[ 'T f i Xi C3. 6)
t-0 i-O

It is interesting to note that a has the identical form of the error

defined by the autocorrela:ion equations in linear prediction (see

equation (2.22)).

It has been shown [16, 17] tiat the results obtained for the un-

known filter coeflicients fi are identical to (2.13) which utilizes

the autocorrelation ecuations.

The corresponding equations for the covariance method are ob-

tained by defining a conditional density function for the probability

density. This is achieved by treating the M data points x0, X19 ...,

xii_ as a set of deterministic initial conditions and the remaining

16 F. Itakura and S. Saito, "Analysis Synthesis Telephony based on
Maximum Likelihood Method," 6th International Congress on Acoustics,
Tokyo, Japan, Aug. 21-28, 1968, C-5-5, pp. C-17-20.

17 F. Itakura and S. S&ito, "Extraction of Speech Parameters based upon
the Statistical Method," Proc. Speech Info. Process, Tohaku Universit-y,
Sendai, Japan, 5.1, 5.12 (1971) (in Japanese).
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K-M data points as a set of random variables. Under the above assump-

tions, the conditional probability density function is approximated as

[17, 2]

("M ('M+11 .. 'K-l),' (xO'xl ...l MZ

(2ira 2)-0.5 (K-M)xpL[/2ce (3.7)
e e

where
K-I M- 2 (

a - 7 [ f ix (3.8)
r-M i-a

Again it is clear that a has the same form as the error energy defined

for the covariance equations for the case of linear prediction (see

(2.22)). Maximization of the conditional probability density func-

tion is then achieved by maximizing p c with re.pect to the unknown

filter coefficients fi and .e The set of equations (see (2.10))

obtained in this case are identical to those of the covariance method.

3.2 Minimum Predictor Error Variance

in this method the data samples are not considered as a part of

a Gaussian process. In other words, the method remains the same as

before, i.e. the measured impulse response is generated by passing a

noise sequence fe t through an all-pole model [2]. It is assumed

that the error sequence is of zero mean and of variance given by

2 M M
E[e 2I - I I f.f. E[X x ] (3.9)i=0 J-0 1 j 3 t-x-

Next the process is assumed to be stationary so that the expectation

in (3.9) can be expressed as
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E[xt_ixt_il ( .I

and the error variance as

EteJ]- " fgf (3.11)
S ±;o j-o -g-j

The problem is to determine the filter coefficients so as to minimize

the error variance.

An additional assumption is now made. Specfically, it is assumed

that the process is ergodic so that the ensemble average E may be

converted to a time average. Hence, the approximation

A 1 K-

gi-j K - xt-ix-J
tnM

C (3.12)

leads to the covariance equations (2.10) and the approximation

K-ji-J I-I
g-j -o x t+f i-ji

- rij (3.13)

leads to the autocorrelation equations (2.13). Hence, this method

yields a set of analysis equations identical to those for the dis-

crete Wiener filter.

3.3 Maximum Entropy Spectral Analysis

An important aspect of time series analysis is the computation

of the power spectral density which is primarily determined by the

second order statistics. In an actual experiment, the number of
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data points is always finite. Hence, for the problem of interest the

data length may not be sufficient to obtain a specified degree of

frequency resolution. Also, given a finite number of K data points,

we can obtain at most approximations of the K autocorrelation func-

tions r0, rI, ..., rK 1. In the previous autocorrelation formulations

the data has been assumed to be zero outside the known interval. In

some instances, this may be an unreasonable assumption about the extension

of the data beyond the known interval. The question then arises as to what

assumptions should be made about the data outside the finite sample

and what assumption should be made about their second order statis-

tics (i.e. the autocorrelation), si6ie they determine the power

spectral density.

Burg proposed an information theory approach to the problem. He

suggested [18] that the most reasonable choice of the unknown auto-

correlations is the one which adds no information or adds most

randomness or maximizes the entropy. He then proceeded to select the

power spectral density having the maximum entropy of all possible

spectra that agrees with the known values of the autocorrelation

function ri .

The information content of a random process is defined in terms

of a quantity called entropy and is mathematically expressed as

H P i n P C3.14)ii J

where P is the probability of the jth event of a random process.

18 J.P. Burg, "Maximum Entropy Spectral Analysis," Ph.D. Thesis,
Stanford University, Palo Alto, California 1975.
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When the random variable takes on a continuum of values, the sum in

the definition of the entropy is replaced by an integral. Since

we are dealing with a time series x0 , X1, ... , xI, the probability

is replaced by the joint probability density function p(x0,x 1
.

Thus

H - - P(X0 . K )  ... , xKldV (3.15)

where dV is an element of volume in the space spanned by the random

variables. Burg then proceeded to adjoin a hypothetical variable k

to the available estimates of the autocorrelation function r0, rl,

r2 and so on. We may then consider the joint probability density

available for the K data points and the adjoined xk as

p(Xox ! , ., 'K-1,XK) (3.16)

This probability density function has an entropy

H - -fP(X0,,...,xKCX)tn{p(x0,xl,..,xK-lxK) 'V C3.17)

Burg chose as (3.16) that probability density function which has its

first K second order moments as r0,r1 , ... , rKl, and which under

the given constraint maximized (3.17). The obvious choice for the

probability density function in (3.16) is Gaussian since according

to Shannon and Weaver [19, 20] the Gaussian distribution results in

maximum entropy under a constant energy constraint. Thus

19 C.E. Shannon and W. Weaver, The Mathematical Theory of Communica-
tion. Urbana, Illinois: University of Illinois Press, 1962, pp. 56-57.

20 R.N. McDonough, "Maximum-entropy spatial processing of array data,"
Geophysics, Vol. 39, No. 6, December 1974, pp. 843-851.
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exp 1- X1 '
P(x0 ,X1 .... WxKIX) - - (3.18)

where X is the column vector of the x., the prime indicates the trans-

pose, and the matrix IRK] is given by

r r I  .. ... rK 1  rX

r I  r 0  rK_2 rK- 1I ~ ~~IRK]" " :" :

rK- 1

LrK ............ 
r 0  

(3.19)

The entropy can then be expressed as [19, 20]
B 1 K-I

nf{ (2"te) det'[R31} C3.20)

Now rK is to be chosen in such a way that H in (3.20) is maximized.

Hence the value of rK is the one which maximizes det [RK].

In order for r. to constitute a proper set of autocorrelation

values, the matrix [R.] must be positive semi-definite [21). More-

over, det [R K is a quadratic function in r K, It follows that

maximizing det [R K with respect to r K yields the value of rK obtained

from the solution of the following equation

rI1 r0  .... rK 2

r2  rI  r K-3
det 0 (3.21)

rK rKl.... r 1

2l A. Van den Bos, "Alternative Interpretation of Maximum Entropy
Spectral Analysis," IEEE Trans. on Information Theory, Vol. IT-17,
No. 4, 1971, pp. 493-494.
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A Discussion of Various Approaches to the Identification/Approximation Problem

TAPAN K. SARKAR, SENIOR MMHUR, 11tI, DONALD D. WEINER, ME.MBLR, 1EEr,

JOSHUA NEBAT, AND) VIJAY K. JAIN, SLEM(R MEMBER, iELE

Abstrac-Tbe Ideatifncation/approximation of a linear system by vetted to an equivalent stationary problem by convolving
poles and residues frnm a measured finite length input-output record the time limited signal with white noise of unit power 13]
of the system is discussed. The objective of this paper is to illustrate In the second section the classical method fcr extratig the
that several different formulations for characterizing the Impulse signal from noise is discussed. This is the Wiener-Kolmogoroff
response of a system yield the same set of poles. theory 14]. The digital form of the Wiener-ltopf equation

is derived. Topics associated with Wiener filters are alsopresented They include inverse filter design, linear prediction.

N RECENT years the singularity ,xpansion method (SEM) predictive deconvolution (or spiking) filter design, recursive
has been used very successfully to study transient phenom- filter design, and Kalman filtering. Both the popularly known

ena in electromagnetic radiation and scattering problems. covariance and autocorrelation methods are derived from the
With this approach, information is obtained about the electro- Wiener filter theory.
magnetic structures from meas.ired transient responses to In the third section the various stochastic extensions are
knowa inputs. The information leads to a characterization described. They include the maximum likelihood estimation
of the impulse response of the electromagnetic system by a theory, the minimum predictor error variance and the maxi-
sum of damped exponentials. It is desirable to know the mum entropy spectral analysis. It is demonstrated that iden-
complex natural frequencies or poles with a high degree of f!cal analysis equations for parametric modeling of the system
accuracy. The problem of extraction of the poles from the -i be obtained.
measured transient response data is reduced to a system ap- The fourth section provides Prony's method in various
proximation/identification problem, forms. In particular, when a semi-least-squares approach is

This paper deals with the identificaiion/approxumation of applied to Prony's method, both the autocorrelation and the
a linear system by poles and residues from a measured finite covariance method appear as special cases. Thus, it is also
length input-output record of the system. The objective of a form of a digital Wiener filter.
this paper is to illustrate that several different formulations
for characterizing the impulse response of a system yield the I. WIENER FILTER THEORY
same set of poles.

Recognition that different formulations yield the same Kolmogoroff in 1942 and Wiener in 1943 were the first
poles is not widely appreciated. It is shown here that formula- to present a unified theory on extrapolation, interpolation.
tions based upan different assumptions result in identical and smoothing of stationary time series. The linear filter
sets of analy;i' equations. For example, it is not at all ob- which performs the desired task is obtained by the solution
vious that Pirny's method (as derived by most numerical of an integral equation known as the Wiener-Hopf equation
analysis fo,nulations) may be interpreted in terms of pre- 14). For sampled data systems, the integral form of the
dicting each value of data and, therefore, is a form of digital Wiener-Hopf equations reduces to a finite sum. The present
Wiener filter. Markel 127 did recognize the fact that identical treatment describes how Wiener's concepts can be applied
analysis equations can be obtained by several different tech- to the identification/approximation of linear systems. The
niques. basic model for this process consists of an input signal, adesired output signal, and an actual output signal. If one

In our discussion of the various approaches, only references m es t me an d er etwee the sired out
which are directly relevant are noted. No attempt has been
made to cite the earliest sources. In many cases, additional put signal and the actual output signal, it becomes possible

to solve for the optimum system commonly known as theef rnlemay beofo in aers mentind /appro"Wiener" filter. The fundamental assumption underlying the
The problem of interest is to identify/approximate the prcdeistaalpoessaesainry

transfer function of a system by its poles and residues when procedure is that all processes are stationary.
the noise-contaminated input and output are specified. The A properties
signal and noise are considered to be stationary processes, are time invariant. In particular, the statistics of the time

con- series are independent of time. By definition, a stationaryWhen time-limited signals are involved, the poblem is co time series must be of infinite duration. However, in anactual experiment, we observe a times series over a finite
Manuscript received May 14, 1980; revised February 3, 1981. This

work was supported in part by AFWL under Contract F33615-77-C- interval. In order to apply the concepts of Wiener filtering,
2059 and by the Office of Naval Research under Contract N00014-79- the finite length time series is convolved with a white noise
C.0598. series of unit power, to yield a stationary time series 131.

T. Sarkar is with the Department of Electrical Engineering, Rochester Moreover, in actual measurements only one waveform is
Institute of Technology, Roc'hester, NY 14623.

D. D. Weiner and J. Nebat are with the Department of Electrical often available for computing various statistics. Thus ensemble
Engineering, Syracuse Univerity, Syracuse, NY 13210. averages are frequently evaluated by means of appropriate

V. K. )ain is with the Department of Electrical Engineering, Uni- time averages. This is valid only when the random processes
versity of South Florida, Tampa, FL 33620. are ergodic.
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_4 In order to solve the above equations, it is necessary to

.1~ * Do I F.11a, _'17
'--o' , , , .... compute the expected values in (5). By assuming that the

L j _ _ ensemble averages can be evaluated in terms of time averages,
one obtains [31

K-1E{xt_ tr/} 1 X.rg. , 1 ~/ 6
_---- - rrt j Cr (6)

I O .... O .... 5a~o' __ 1K - A1rf

_,__ I(in the covariance method)
t_01 K.M-2

Fig. 1. Principles of Wiener filtering. - I +M

K -

Although the concept of Wiener filtering is well-known, it is
inJuded here for completeness. The fundamental elements of I X-Ir-It-

digital Wiener filtering are summarized in Fig. 1 for the sam- -K xtxt+il = r(r j) (7)

pled data problem. Given the input sequence x1 and a desired -0

output sequence dr, the problem is to find the linear filter (in the autocorrelation method).
coefficients ft, whose output sequence x, * f, (the asterisk
denotes convolution) yields a minimum mean-squared error Similarly
estimate of dr. If E{'} denotes the expected value, then the

error I K-1
E d - I dtxr_ /  (8)

I = E (dt -,t)')(1 K-M rM

is to be minimized. (in the covariance method)

In this case an M-length filter ft = {fo. f,. fM - II con-
verts, in a least-error energy sense, a K-length input x, = I K-I+M

approximates the desired sequence d, = fd 0 ,dj, ",dKM 21. K F o

The actual output is obtained as (in the autocorrelation method).

Yt (YOi YI ""YK+M-2 It is important to stress that the terms "covariance" and

M-I autocorrelation" are not based upon the standard usage of
=xtr= f, f.xt,. (2) the terms as occur in the theory of stochastic processes.

r=0 Rather, we follow the usage which is quite prevalent in the

The problem of making the actual output y, as close a speech processing literature 15]. The following discussion is

sible to the desired output dt can be interpreted in terms of intended to clarify their interpretation.
It is clear that the covariance definition given by (6) yields

minimizing the error "energy" an unbiased estimate since

I = E ((d t -y ,)21}= E d , - f x -7 (3) E[1tr~ } =K - - I~

0,= -t 2; r-

The error is minimized by evaluating the partial derivatives of K I

I with respect to f and equating them to zero. This results in I Y,
a set of equations K-M -_M

=E 2 dr- my, t-r (xt) = E{xr-rXr-j}"

dh T=0 On the other hand, the autocorrelation definition given by

M - 1 (7) results in a biased estimate since

= -2Etdx,_i} + 2 Y fEfxt- rxr-}

= 0, forj = 0, 1. 2, ",M- 1 (4) i r -rxt-ij

The unknown filter coefficients are obtained by solving the K-I -Il-t

following set of simultaneous equations. This is the discrete =- E{xx+-il )

Wiener-Hopf equation. K t0

341 for/ , x,_ ,i M = E(dx _ ( iI= i E tt rhia).

for/- 0, 1, -.., M- 1, (5) Since (,r - )<M. it is interesting to note that the bias is

, 0
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negligible when 4f (the order of the filter) is much less than transformed to an impulse of area o by an all-zero filter
K. The bias is significant, however, when K is only slightly of the form
larger than M. This explains why a large number of data
points (K )t M) is necessary for unbiased spectral estimation M I

when using the autocorrelation function to obtain the power F(z) =Z fiz , with f0 = 1. (15
spectral density. 1=0

Because the covariance method gives an unbiased estimate, In terms of Fig. , the desired waveform d, is an impulse
it might be assumed that it is a better estimate. However, the isof area a. It follows that the coefficients of the filter should
biased estimate provided by the autocorrelation method isbe chosen such that
often preferable. As an example consider the zero mean four
data point sequence (4, - 2, -1, -1) and AI = 2.0. Using the M
unbiased estimator, the expected values are Coo' = 1.0,
CI 0 ' = 1.5. C 2 0 ' = -1.0, C 3 0 ' = -2.0. In contrast, the '-- 0

biased estimator results in r(0 ) = 5.5, r(I) = -1.25, r( 2) =

-0.5. r(3) = -1.0. Note that Coo' is less than C1 0 ' whereas where 6,= I for = 0 and zero otherwise. Multiplication of
r(o) is guaranteed to be greater than r(?) for -r > 0. Hence, the both sides by x,_1 and summing r from k to K - 1 + 1, one
autocorrelation method yields nonnegative power spectral obtains
densities whereas the covariance method may not.

Continuing with our development, the discrete Wiener- Al- IFA -I 1 1 0 k >0
Hopf equation presented in 1S) can be written in the follow- 2: T ; X xr I  = (17)
ing matrix form for the covariance method: =O L r=k I oI ax-, k = 0

[Cil] x j[Fi]MX I = [Dj]Mx 1 (10) Since x i zeiD for j > 0, the unknown coefficients f, for

7 = 1, 2, , M - I are obtained from the solution of the

where ICqI is a square matrix whose elements are given as following equaticns:

C0 ( ix, (01) fr[ Xr_7tx =0 (IS)

r=M r=0 r-k

IFJ is a column matrix consisting of the if unknown filter forns- 1, 2, reuc t4 - 1. F vr k ian de=u0, the above equa-

coefficients f.o , fl, , .m-, and [Di l is a column matrix tions reduce to that of the covariance equations as in (10).

whose elements are given by This is because

K-I
K-1

Di 
= 

2,; dtxt-" (12) D = Atxi=.(9

rr= Mtg m

For the autocorrelation method, the unknown filter coef- For k = 0 and I = Al, (18) reduces to that of the autocor-
ficients are obtained from the solution of the matrix equation relation equations. If the input signal is approximated by an

all-pole model, the poles of the input signal are obtained from
[Rjt-ij]MxM[Ft]MX I = [D] Mx 1 (13) the zeros of F(z), i.e., from the solution of the polynomial

equations
where IR i-/I is a square matrix whose elements are given as

M-I-MK- I-i-'l-

Rjjit= K-i+M xr t = xx,+ji-i, (14) 1 f z - = 0. (20)
7=0

and [Di] is a column matrix defined by 1121. In particular, if (z ), is the ith root of the above equation
Interestingly, most of the formulations for the solution of (20), then the ith pole is equal to In [(z- m

an unknown linear filter lead to analysis equations which can B. Linear Prediction
be formulated either in terms of the autocorrelation matrix
equations (13) or in terms of the covariance matrix equations The term "linear prediction" was first used by Wiener in
(10). his classic work on prediction of stationary time series. Since

It is important to note that the Wiener filter is not always its publication, it has found wide application in the determina-
realizable as a causal rational function (in terms of poles and tion of all-pole models for the processing of speech signals
zeros). As a result, the Wiener filter is, in general, an infinite 15].
order filter. When the order of the filter is specified a priori, The basic philosophy here is to take a part of the sampled
the resulting filter may no longer be optimum, waveform (say the first M - I points from K data points)

Various forms of the Wiener filter have appeared under dif- and predict the next data point on the waveform by proper
ferent names and have been used in various geophysical, choice of the predictor coefficients a. The linear predictor
speech processing, and digital signal processing applications, of step size one predicts the Mth data point of the waveform
Next, various modifications of the Wiener filter are presented. when a (Al - I) order predictor filter is chosen. In the time

domain, the predicted sample im is given by
A. Inverse Filter Formulation M.- I

The inverse filter attempts to transform the input signal im = - a
into an impulse [61. Assume that the input sequence x, is t I



92 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-30, NO. I, JANUARY 1982

where (-a,, -a 2 , -a 3 , .--, --aM-l) are the predictor coef- y, is assumed to be a delayed impulse such that
ficients. Assuming the signal spectrum is to be modeled by
an all-pole model, the coefficients ai are the negative of the M- I

values of fi presented in (15). A (M - 1) order linear pre- X frxt- = °6-0+1- (24)
dictor thus requires a linear combination of the previous ?=o
(M1 - 1) samples. The error is then given by The unknown filter coefficients fr can be pursued in a manner

analgous to the inverse filter approach by assuming the input
eM =CM + XM to be represented as an all-pole model. However, we prefer

M-I to show that the filter coefficients can also be determined
=- Z ajXM-t + XM by interpreting the problem as a prediction problem. It is in

this sense that the term predictive deconvolution is used [7].
M-1 Introduce the change of variables t - ot + 1 in (24).

T-- axM-I with a0 --l. (21) The resulting equation is

i=o M- 1

When (K- 1 + 1) different data points are predicted, the total Z ftx#+a-- = X5,. (25)

squared error is defined by 7=0

Next, assume the filter coefficients to be given by

= _ [e,] 2 = aI2 r a- -I zeros
t=-k t=-k L =0

M-1 Al-I K-+I t (-1, 0,, ", 0, -a, --a 2 , -, -aM -). (26)

= 2 aai t -iXr-i The upper limit on the summation is now given by M + a - 2.
Equation (25) can now be written as

M-IM-I I -

I - f,, I f -X,_-X 1 . (22) M+a-2
i= 0 j= O r -- k X r+ a _ I - + T / .X t+ 0 -r -l

I-=1

Minimization of 1, with respect to the set of the filter coef- M- I
ficients leads to a set of simultaneous equations given by = Xt+a- I - x -

7"= 1
M- If IK-li-i

=: xtixt_ = 0 (23) = f56. (27)
If the estimate of Xt+a_ I is assumed to be given by ir+a _ 1,

for 1 = 1. 2, --, M - 1, from which the unknown filter coef- then
ficients fi are obtained. When k = M and I = 0, this amounts
to minimization of the error only over data points of the
waveform from M to K - 1. When k = 0 and I = M, this Xra-I = axt-r  (28)

implies minimization over the entire waveform. Equation 1--

(23) are identical to the set of equations (19) obtained in the and o6 t can be interpreted as the error of the estimate.
case of the inverse filter formulation in the previous section. If the total squared error is minimized, as was done for the

Linear prediction is, therefore, equivalent to an all-pole linear prediction approach in Section II-B, a set of equations
model for the spectrum of the input xt.The poles for this is obtained for the filter coefficients. When a = 1, these equa-
model are again obtained from the solution of the polynomial tions reduce to the same equations as were obtained in (23).
equation D. Recursive Filter Design

M-I Recursive filters are often used in digital filter design [81-
Z ftz- = ( 121. With respect to Fig. 1, the spectral estimation problem
i=0 is now posed in the following manner. Assume the filter in-

Thus, if x, represents the measured impulse response of the put is the impulse 6t. Let the filter impulse response be de-
system, the set of poles obtained by linear prediction can be termined so as to approximate the data sequence in a mini-
interpreted so as to parameterize the system in terms of an mum mean squared error sense. If xf is the input to the filter
all-pole model, and yt is the output, then they are related by

C. Predictive Deconvolution or Spiking Filter Design M-I L- I

The general linear filtering problem involves the input 2 akyt-k bxt-,"

xf, the impulse response h, and the output Y,. When it is

desirable to evaluate h, given x, and yt, the problem is referred Application of the z-transform to both sides yields
o as deconvolution. In this sense the inverse filter problem M-1 L-I

discussed in Section Il-A is a deconvolution problem. Pre- - acz- ky(z)= -- bz-X(.)
dictive deconvolution refers to the case in which the output k=O r=0
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or As b, 0 for t > L (from (33)), one may write

L- I M-I

b_-" h,=- oj,, for t > (341Y(') ,- 0 B(z) /

(z) kz A(z) By assuming the approximation in (31) is valid, the coef-

k=o ficients fg approximate the coefficients d, for t > 1. Equa-
tion (34) may then be approximated by

Therefore, a recursive filter has a transfer function which
is expressed as a ratio of two polynomials of the z-transform M-1
variable. The objective here is to synthesize the filter from the d,--,- T"  aidt-j, fort = L + 1, L + 2,'. K - I
given impulse response of the system. It is important to note j=1
that, unlike the previous three types of filters, this is not an
all-pole filter but a pole-zero model. In other words, given (35)
some desired filter operator D(z) (which is the transfer func-
tion of a desired system having the impulse response di), The error in (35) is given by
we require the polynomials A(z) and B(z) of the filter

M-I
B() e,= dt + aid-i

F(z) = 8(z) (30) i
A(z)

M-1
such that T, aidt_,; since a0 = 1,

,=0
F(z)-D(z)=d 0 +dz

- 1 +d 2 z-2 +...+ d z-K+ 1 .

fort=L+ 1,L+2,'",K- 1. (36)

The ai coefficients are chosen in such a way that the mean-
A technique for determining A(z) and B(z) is outlined squared error is minimized. In particular,

next.

K -I K- [ Id 2
A(z)= l +aiz - i +azz - 2 +-.+aMZ4+ (32) J= I e, 2

= [ aid, (37)
t L+I t-L+IL j=O

and is minimized. By differentiating I of (37) with respect to

B(z) bo + blz- I + b 2 z- 2 + ... + bL- 1 z-L.l (33) aj and equating the derivatives to zero, a set of simultaneous

equations is obtained. They are given by

where At and L are arbitrary numbers which fix the number of [
poles and zeros, respectively, for the filter. Also, divide B(z) [ 0,
by A(z) so as to obtain the infinite series a d jdtk 0,

"o L r-L+l

F(z)=f° +fz-I +f 2 z- 2 + fork= 1,2, -.,,M- 1. (38)

Since FWA W) = B(z), it follows that For a realizable filter the numerator polynomial is generally

one degree lower than the denominator polynomial (if the
F(z){l +az'+az 2 +.- - poles are simple). Thus

=-bO +rbl
z- I + b2 z

- 2 + - +bLIZL . L + I =M.

Since multiplication of z-transforms is equivalent to convolu- Hence, (38) reduces to
tion of the discrete time series, the series of bt coefficients
is equal to the convolution of the ft coefficients with the a, M-I IK
coefficients. Or, equivalently, ai L dt-jd- k 0 (39)

M- I 0 rM

bt= 2 ajft-I which is equivalent to the covariance equations as given by

j.0 (10). The right side of (10) is zero because

By assumption, ao = I. Therefore, K -I
Di = 1; 6,-i=O0, for i= 1, 2,"--, M- 1.

M-1 riM

fT lhbt-h p aaft-ai. I The poles for the filter are then obtained by the solution of
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the polynomial equation estimate sn is orthogonal to the measured data, or

.M - E[(s.-)dTj =0, for i=0, 1,"M,-. (43)
2;aiz-i =O0.
tz0 Expressed in a different way

M- I

It was shown previously that the inverse filter, assuming an Erd =iI for , "
all-pole model for the signal spectrum, is also equivalent to L''"] 2; A"E(djd 0, L 'M

i=O0
(10) We conclude, therefore, that the poles for an all-pole

model correspond to the ideitical set of poles for a pole-zero (44)
model for the same order filter.

Next the residues at the poles (or equivalently, the numera- However, the matrix inversion that is required becomes com-
tor polynomial) can be obtained by minimizing the mean- putationaly impractical when M is large. Wiener and
squared error given by -tfj. - dt)2 . Kolmogoroff assumed an infinit. amount of data ithat is,

It is interesting to note that when the numerator polynomial the lower limit of the summation is -- rather than zero).
is realized directly in the forrri presented in (33), the problem Equation (43) is then the discrete form of the Wiener-Hopf
reduces to the case of the Pade approximation 1131. Mathe- equation which was solved sng spectral factorization.
maticaly, Pade approximation results in an approximation of The basic difference between Wiener-kolmogoroff theory
D(:) by Fl:) such that the seminorm and the Kalman filter theory is how equation (44) is solved.

In 1955, J. W. Follin suggested a recursive approach to solve
ID(z) - F(z)l = ID(l) - F(l)I + ID'(1)- F'()I (44) It is clear [see 15, p. 651 that Follin's work provided a

direct stimulus for the work of Richard Bucy. which led to
+"-- -+ D '(L)- +'- '(1)1 (40) his subsequent collaboration with Kalman in the total de-

velopment of the "stati space" approach for obtaining the
is made zero. Here Dk (1) represent the kth derivative of D(z) filter equations.
evaluated on the unit circle. F. Summary

E. Kalman Filter Theorn' As outlined above, all forms of the digital Wiener filter

Underlying Wiener filter design is the so-called Wiener- lead either to the covariance or the autocorrelation equations.
Hopf integral equation, its solution through spectral factonza- It is also interesting that the same set of poles is obtained
tion, and the practical problem of synthesizing the theoreti- whether one models the signal as an all-pole model or as a
cally optimal filter from its impulse response. The normal pole-zero model.

Wiener filter is derived from the Wiener-Hopf equationand.in Ill. STOCHASTIC METHODS APPLIED TO
general, this equation can be solved only in the steady state, SYSTEM IDENTIFICATION
i.e.. when the observation interval is semi-infinite. The contri-
bution of Kalman was recognition of the fact that the integral Three different stochastic methods used in spectral estima-
equation could be converted into a nonlinear differential equa- tion are presented in this section. They are maximum likelihood
tion whose solution contains all the necessary information for estimation, minimum predictor error variance estimation, and
design of the optimal filter. The problem of spectral factoriza- maximum entropy spectral analysis. All three models are con-
tion in the Wiener filter is analagous to the requirement for sidered as al1-pol models. These methods have no relation-
solving M(I + 1)/2 coupled nonlinear algebraic equations in ship with dis :rete Wiener filtering theory. The methods
the M-order Kalman filter. These equations can be solved presented in this section start with completely different as-
numerically for transient type problems, where data is avail- sumptions but finally yield the identical set of either co-
able only for a finite interval. This, in general, results in the variance or autocorrelation equations which characterize the
Kalman filters being time variant. However, in the steady- system to be identified from the measured impulse response.
state the Kalman filter reduces to the time invariant Wiener In these methods it is assumed that the data samples are
filter (141 . The presentation by Sorensen (151 expresses the part of a random process. The problem is to choose th,
results of Kalman filter theory in a way that makes this com- parameters of the system impulse response so as to make the
parison easier, probability of occurence of the actual observation most

The problem involves estimating a signal {s,), from meas- likely. In other words, the system parameters are chosen in
ured data d 0 . d 1 . . d - II. If the estimate is computed as such a way that the probability density function defining the

a linear combination of the dn, then paraineters is r aximized.

M I ,A. Maximum Likelihood Estimation Theory

;n =2 Aidi. (41) In this approa.h the measured impulse response of the
i=o system is considered as a segment of a random process. It is

further assumed that the impulse response can be generated
The M coefficients A i are chosen in such a way that the mean- by passing an uncorrelated noise sequence {er} through an
squared error, all-pole model of the form

I = E[{s. - sn)T(s. - In)), (42) I1F 4) M- _ withfo = 1. 145)

is minimized. Here r denotes the transpose of the row vector z z

(s, -- in). This criterion is satisfied when the error in the J=O

Ir_
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Next the random process {e,} is assumed to be Gaussian where
with zero mean and variance o,. 2 . Thus,

E{e,} = 0 and E~eiej}=6#o 2 (46) aX 1
1xr ] 2

As the measured impulse response x,, t = 0, I , A - 1 t= At iz 0
has been assumed to be generated by passing the noise se- Again it is clear that a has the same form as the errur eregs
quence {et} through the all-pole model, it follows that defined for the covariance equations for the case of linear

M prediction (see (22)) Maximization of the conditioni prob-

e, (47) ability density function is then achieved by maxirmizing p,
i= 0 with respect to the unknown filter coefficients f, and o,2

The set of equations (see (10 obtained in this case are
From (46) and (47) it is clear that the sequence xr is Gaussian identical to those of the covariance method.
with zero mean and a cross correlation defined by

B. Minimum Predictor Error Variance

EJxix'] =gi-j. (48) In this method the data samples are not considered as a
part oi a Gaussian process. In other wvords. the methud re-

This correlation sequence g,-i would then be a function of mains the same as before, i.e., the measured impulse response
the system parameters f,. i = 0. 1,.--', - 1 and e. Since is generated by passing a noise sequence ,et thi )ugh an all-
x r is Gaussian. a Gaussian multivariate probability density pole model [2 1 , It is assumed that the error sequence is of
function is defined for the sequence of random variables zero mean and of variance gven by
x 0 , Xt, -, XK - 1 . The maximum likelihood theory assumes
that the parameter values which make the measured observa- M M
tion of the impulse response most likely are the same values E[et 2 ] =2 2: fif 1E[xtixt-]. (53)
which maximize the joint probability density function of i=0 Jo

xi, i = 0, 1, -.., K - 1. This can be achieved by differentiating Next the process is assumed to be stationary so that the ex-
the density function with each of the unknown variables,
ft, 2, ", f, - 1 and oe 2 and then setting the first partial de- pectation in (53) can be expressed as

nvative equal to zero. The solutions of the set of equations E
then yield the values for the unknowr parameters. Even [xtx 1 ,] =g i 54
though the procedure is c' nceptually simple, the set of equa- and the error variance as
tions becomes extremely nonlinear for M greater than 2 and
no exact solution for this problem exists [2]. Al At

However. Itakura and Saito 1161. 1171 solved the maxi- E[et 2 ] I I fifig,-i, (55)
mum likelihood problem by making some additional assump- -=0 /0
tions. First, the number of data points K is made much greater
than M, the order of the filter (i.e.. K >M A). Second, the joint The problem is to determine the filter coefficients so as to
probability density function for the sequence x 0 , x , x 2 , -, minimize the error variance.
xx - t is approximated by An additional assumption is now made. Specifically, it

... = [ 21.I -K 21 is assumed that the process is ergodic so that the ersemble
P{xX1, ". x =[ -I exp [--02oe] (49) average E may be converted to a time average. Hence, the

where approximation

I : fX_].(50) Ai- 1f x-i=Cl (56)
r__ 0 J=OK -. Al _

It is interpsting to note that a has the identical form of the leads to the covariance equation (10) and the approximation

error defined by the autocorrelation equations in linear
prediction (see (22)). 1 K -Ir-j(57)

It has been shown 1161 171 that the results obtained gi-i IK (

for the unknown filter coefficients fi are identical to (13) O

which utilizes the autocorrelation equations. leads to the autocorrelation equations (13). Hence, this
The corresponding equations for the covariance method method yields a set of analysis equations iden'ical to those

are obtained by defining a conditional density function for for the discrete Wiener filter.
the probability density. This is achieved by treating the M
data points x 0 , xt, -, xM - as a set of deterministic initial C. Maximum Entropy Spectral Analysis
conditions and the remaining K - M data points as a set of
random variables. Under the above assumptions, the con- An important aspect of time series analysis is the computa-

ditional probability density function is approximated as tion of the power spectral density which is primarily dc

[171, 121. termined by the second-order statistics In an actual experi-
ment, the number of data points is always finite. Hence, for

Pc{(XM. XM+ I. XK I)I(xo. X.'-,XM the problem of interest the data length may not be sufficient
to obtain a specified degree of frequency resolution. Also,

=(2roa
2 )- 0 5 -M) exp [--/20,1 (51) given a finite number of K data point- we can obtain at
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most approximations of th-1 K autocorrelation functions where X is the column vector of the x1, the pnme indicates

Fo. rl. -, rK - I. In the previous autocorrelation formula- the transpose, and the matrix IRK ! is given by
tions the data has been assumed to be zero outside the known
iterval. In some instances, this may be an unreasonable as- ro r K-IK
sumption about the extension of the data beyond the known r, ro r 2 rK -I

interval. The question then arises as to what assumptions
shouldt be made about the data outside the finite sample and IRK l= .(63)
what assumption should be made about their second order 1k- i

statistics (i.e., the autocorrelation), since they determine
the power spectral density. rK ... r0

Burg proposed an information theory approach to the
problem, He suggested [18] that the most reasonable choice The entrop can then be expressed as [191. [20
of the unknown autocorrelations is the one which adds no
information or adds most randomness or maximizes the H = In {(27re)K +t det [RK }. (64)
entropy. He then proceeded to select the power spectral
density having the maximum entropy of all possible spectra Now rK is to be chosen in such a way that H in (64) is maxi-
that agrees with the known values of the autocorrelation mized. Hence the value of rK is the one which maximizes
function r, det [RK ].

The information content of a random process is defined In order for ri to constitute a proper set of autocorrelation
in terms of a quantity called entropy and is mathematically values, the matrix [RK] must be positive semi-definite 121]
expressed as Moreover, det IRK I is a quadratic function in rK It follows

that maximizing det IRK] with respect to rK yields the
H - Z P, In P, (58) value of rK obtained from the solution of the following

equation

where P, is the probability of the !th event of a random process.
When the random variable takes on a continuum of values, I Fo ..' rK - 2

the sum in the definition of the entropy is -. placed by an r2 ri rK -3
integral. Since we are dealing with a time series x 0 , xi, det 0. (b5)

XK - . the probability is replaced by the joint probability
density function p(x o , x 1 , XK- t ). Thus rK )K - I - F

fp Alternatively, if an all-pole K - I order model is chosen,

then from the previous sections we know that the autocor-
relation functions for this problem are related by the K

In (P(X0 , X , XK - I I d V (59) unknowns fi as ri = r-i and

where dV is an element of volume in the space spanned by K- I

the random variables. Burg then proceeded to adjoin a hypo- ri+ Y, fk,/_k = 0, forj = 1,2, .. , K. (66)
thetical variable xk to the available estimates of the autocor- k=I

relation function ro , r1 , r2, and so on. We may then consider
the joint probability density available for the K data points This is identical to (23), for f 0 = 1. The set of K equations
and the adjoined XK as in K - I unknowns in (66) indeed has a solution which is

found by solving the first K - I equations. The last equa-
tion can be seen to be a linear combination of the first K - I

This probability density function has an entropy equations. In fact, the determinant of the above set of equa-
tions in (66) is identical to that of (65). In this sense, (66)

H =is consistent with the maximum entropy method.
- IThus it is shown that the extrapolated autocorrelation

functions coincide with those functions which would have
•In p(xo,x, ,XK - 1,XK)} dV (61) been predicted by the model of equation (66). Hence this

Burg chose as (60) that probability density function which procedure is equivalent to the all-pole model described by
has its first K second-order moments as r,, r '., FK-, the maximum likelihood estimation [201-1231.
and which under the given constraint maximized (61). The Since so far as the second-order statistics are concerned,
obvious choice for the probability density function in (60) the sampled data x, may be modeled arbitrarily closely by
is Gaussian since according to Shannon and Weaver 119], an all-pole model of order K, we may view the above process
[201 the Gaussian distribution results in maximum entropy as an autoregressive process with input (white noise) and
under a constant energy constraint. Thus output (x1 ) where the filter is described by the transfer func-

p~xo xl. ",x _ txx)tion 1221, [23]:

exp{-_I X'[R I'X) I

K K+l +,2 (62) H(z)= K-I (67)
(27r)- det [IRK] 1+ z-

2
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.Also V. CONCLUSIoN

We have demonstrated that identical analysis equat,_,r.s
So(f) = S(f)l IHQ)2 (68) can be obtained by several different techniques eser, th.ug

where Solf) and Si~f) are the output and input power spectral they start with formulations based on diflerent assunp'! .nswhee SU"}andSitf) re he utpt ad iputpowr sectal However a major objection with all these tc~t'n q,res is

density, respectively. The power spectral density of the proc- Hteter sem obecoi on for th lhuis
ms x, has been shown to be 1201-1231 that there seems to be nu compelling reason for the hoi~t: .!

a0 = I rather than am - I =  , or for that matter the choic

Sp~f)  of any a, to be unit> Yet each of these choices lceds to i
So(f) (69) different set of exponents 1131. As an example Lonsider the

S12 sipal exp 1-0.00035t) cos (0.25t For this signal we have
+ ft exp S1.2 = exp 1-000035 ± /0.251 = 0.97 /0.25 Let the

length of data p'Ants be K = 5 and the order of the filter
where Sitf) is the power spectrum of the white noise ig - 2 Then -x is the sequence 1 00.0 9".0b .03.054
the filter. for the sequence ,r = 0, I, 2, 3, 4' To this we add I percent

The fr zero-mean additive noise to obtain the sequence :xnorse,
Thus, for = K. identical analysis equations are obtained {1 01. 0.96, 0.89. 072. 0 54 Using the covanance method,

by the maximum entropy spectral analysis and by the maxi- '
mum likeihood estimation theory It has also been shown else- si.2 for this signal are obtained from the tvo roots of the
mmhere that ths tis indeed so [20] -[23]. pol)nornisl equation aos, + ats + a. 0 If one assumes

a0  1 then the computed s1.2 = 0 8'- 1.23. If one assumes

IV PRONY'S ALGORITHM AND ITS EXTENSIONS a I I, then the computed St.2 = 0 9S 1 22 If one assumes
a2 = . then the computed s1 ,2 = I 1 4.

In the previous two sections the system identification The above example thus illustrates the dependence of the
problem was treated as a stochastic problem. The measured exponents on the choice of a, to be unity.
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Alternatively, if an all Dole K-I order model is chosen, then

from "he previous sections we know that the autocorrelation functions

"or this problem are related by the K unknowns as r.- r and

K-1
+ - for j - 1,2, K (3.22)k 1  k" -k .. . . .

This is identical to (2.23), for !0 = 1. The set of K equations in

K-I unknowns in (3.22) indeed has a solution which is found by solving

the first K-i equations. The last equation can be seen to be a

linear combination of the firstK-l equations. In fact, the determinant

of the above set of equations in (3.22) is identical to that of (3.21).

In this sense, (3.22) is consistent with the maximum entropy method.

Thus it is shown that the extrapolated autocorrelatiot functions

coincide with those functions which would have been predicted by the

model of equation (3.22). Rence this procedure is equivalent to the

all-pole model described by the maximum likelihood estimation [20-23].

Since so far as the second order statistics are concerned, the

sampled data x may be modeled arbitrarily closely by an all-polet

model of order K, we may view the above process as an autoregressive

process with input (white noise) and output (xt) where the filter is

described by the transfer function [Z2, 23]

H(z) - K-C3.23)
K-i1~z1 - i 

- i

22 D.E. Smylie, G.K.C. Clarke and T.J. Ulrych, "Analysis of Irregu-
larities in the Earth's Rotation," Methods in Computational Physics,
Vol. 13, New York: Academic Press, 1973, pp. 391-430.

23 S.L. Marple, "Conventional Fourier, Autoregressive and Spectral
Methods of Spectral Analysis," Ph.D. Dissertation, Stanford University,
Palo Alto, California, 1976.
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Also

S (f) S i(f)IH(jW)i2 (3.24)

where S (f) and Si(f) are the output and input power spectral density,

respectively. The power spectral density of the process x has been

shown to be [20-23]

S.(f)
S (f) - - (3.25)

1 + [ fl exp[-j27rfiAt]2
i-i

where S (f) is the power spectrum of the white noise driving the1

filter.

Thus, for M - K, identical analysis equations are obtained by

the maximum entropy spectral analysis and by the maximum likelihood

estimation theory. It has also been shown elsewhere that this is

indeed so [20-23].
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IV. PRONY'S ALGORITlei AND ITS EXMSIONS

In the previous two sections the system identification problem

was treated as a stochastic problem. The measured impulse response

was characterized by a random process. In this section a different

approach is taken in that the noise contaminated impulse response

is processed as though it was a deterministic process. The problem

is to determine the poles and residues which characterize the measured

impulse response.

Historically, Prony was the first to make an attempt at fitting

experimental data with complex exponentials. In 1795 Prony postu-

lated that the basic laws dealing with gas expansion can be ex-

pressed as a sum of exponentials. He demonstrated that, given 2M

data points, it is possible to fit exactly M exponentials to the

data at those points. Prony must have experienced great frustratior

when he applied his method due to the extreme sensitivity of the

exponent to the accuracy of the measured data. Accuracy requirements

have been investigated by Lanczos [241. However, in scme cases of

EMP problems the exponentials encountered are complex and zhey are

approximately at harmonic frequencies. Moreover, the real parts of

the complex exponencials are much smaller than the imaginary parts.

Hence, the damped exponentials in the case of EMP problems are more closely

orthogonal and, thereby, create fewer problems with regard to accuracy

24 C. Lanczos, Functional Analysis. Englewood Cliffs, N.J.:
Prentice Hall, 1956, pp. 272-279.
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than is evidenced in the example by Lanczos. The contamination of

data by noise creates grave problems for extracting M correct exrponents

from 2M data points. Hence, more dat-, are necessary and a semi-least

squares approach to Prony's method is taken. The details of Prony's

method are well known and are omitted in this report. The final

equations that ultimately result are the same as either the auto-

correlation or covarlance equations of linear prediction. McDonough

(13) and Van Blaricum [253, in their Ph.D. dissertations, and Markel

and Gray [2) used the covariance equations (2.10). Thus, the semi-

lease squares Prony's method is equivalent to a M-length Wiener pre-

diction filter. The term semi-least squares has been applied because

the true least squares problem would give rise to a set of coupled

nolinear equations [26]. The true least squares problem has been

defined as in [263.

4.1 Various Extensions to Prony's Method

The reason for presenting this section is to show that for a

particular extension to Prony's method a procedure similar to the

pencil-of-functions method is posed in a Hilbert spvce. Yet each of

them yields a different answer. Hence, the way in which a problem

is developed is extremely important.

25 M. Van Blaricum and R. Mittra,"Techniques for Extracting the
Complex Resonances of a System directly from its Transient
Response; Interaction Note 301, December 1975. (Also in IEEE
Trans. on Antennas and Propagation, Vol. AP-23, No. 6, Nov. 1975.)

26 R.N. McDonough and W.H. Huggins,"Best Least-Squares Representation
of Signals by Expoaenutials," IEEE Trans. AC-13, No. 4, pp. 405-
412, August 1968.
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Tuttle [27] extended the Mth order difference equation encountered

in Prony's method to an M th order d!ffarential equation but then con-

fined attention to the single point t - 0. Kautz [28] then extended

the technique to the semi-infinite interval [0,-). If a continuous

function x is a sum of complex exponentials, then it can be shown

that the various derivatives of x satisfy a constant coefficient

homogeneous differential equation

1aix i ) - 0 with a 0-1 (4.1)

ii t~x

where x(i ) is the i th derivative with respect to t of x But if the

data are noisy, then the right-hand side of the above equation is

no longer zero. We write

a =x~i) " e (4.2)

t t

where et is the error term. Kautz then proceeded to solve for {a.}

by trying to reduce the error

I e [et ] 2 d (4.3)

0

The exponents{s.} used for fitting xt are then obtained from the zeros

of the characteristic equation

M-1 -i
0 a i s - 0 (.4)

27 D.F. Tuttle, "Network Snthesis for Prescribed Transient Response,"

D.Sc. Dissertation, M.I.T., 1948.

28 W.H. Kautz, "Approximation over a Semi-infinite Interval," M.S.
Thesis, M.I.T., 1948.
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The expansion of x as a linear combination of its derivatives

is inappropriate if the data x are not everywhere smooth (for examplet

when it is sampled). Carr [29] extended this technique by integration

of the differential equation (4.1) k times. This leads to

M-1 a x(i-k) . 0 with a - 1 (4.5)
i-O t

where

(i-k)= C.-...C W~ dtdt.65 S 1 dt 2 tk-ldt 4
s s,-

[Note: The lower limit of the integral is 4= and it is assumed .hat

x (') . 0 for i - 0,1, ... , M-1.] (4.7)
t

Again, if the data are noisy, the coefficients {a } are obtained from

the minimization of the function

ccM-1 i-)I I a ax dt C4.8)

0

The exponents si are obtained as before from the solution of the

polynomial equation (4.4).

It is interesting to observe that this approach is very similar

to the pencil-of-function method as discussed in section V1. For

k - M-1, it is obvious that the data xt is an element of a Hilbert

space spanned by the data and its successive integrals [30].

29 J.W. Cart, "An Analytic Investigation of Transient Synthesis by
Exponentials," M.S. thesis, M.I.T., 1949.

30 M.J. Narasimha et al, "A Hilbert Space Approach to Linear Predic-
tive Analysis of Speech Signals, Tech. Report 3606-10, Radioscience
Lab, Stanford Electronics Lab, Stanford University, California, 1974.
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The solution to the system identification problem by any difference

equation leads to a regularized i1l-posed problem which has been

regularized in terms of how close the actual and the measured responses

are instead of the natural frequencies of the waveform. This is described

in detail in the next section.

A major objection with all these techniques is that there seems

to be no compelling reason for the choice of ao  1 rather than am- - 1,

or for that matter the choice of any ai to be unity. Yet each of

these choices leads to a different set of exponents [131. As an

example consider the signal exp [- 00035t] cos (0.25t). For this

signal we have sl,2 - exp [-.00035 + j0.25] - 0.97 + J0.25. Let

the length of data points be K - 5 and the order of the filter M - 2.

Then {x t  is the sequence {i.00, 0.97, 0.88, 0.73, 0.541 for the sequence

{t - 0, 1, 2, 3, 41. To this we add 1% zero mean additive noise to

obtain the sequence {lNoise) = {i.01, 0.96, 0.89, 0.72, 0.541. The

S1,2 for this signal are obtained from the two roots of the polynomial
2

equation a0 s + a1 s + a2 - 0. If one assumes a0 - 1, then the

computed sl ,2 - 0.87 + J.23. If one assumes a1 - 1, then the computed

Sl,2 - 0.98 + j.22. If one assumes a2  1 1, then the computed

8 1,2 - 1.1 + J.14.

The above example thus illustrates the dependence of the exponents

on the choice of ai to be unity.

40

-- b:L . . " ' - l. . . - 1 , - I ,. - - . . | I i l



V. :L-POSED AND WELL-POSE PROBLEMS OF

SYSTD 1DENTIFICATION

The system identification problem is almost always ill-posed. (This

is reflected by the fact that two impulse responses with drastically

different natural frequencies may yield almost identical outputs for the

same input.) An ill-posed problem can be regularized however by imposing

additional constraints on the system.

We begin our discussion by defining the concept of a well-posed

problem along the lines of Tykhonov [31-32] and Lavrentiev [33). In

particular, consider the operator equation

Xh , y (5.1)

where the operatcr X maps an element in the space H to an element in the

space Y. The problem of solving (5.1) for b given X and v is said to be

well-posed if the following conditions are satisfied:

1) The solution to (5.1) exists for each element in the space Y.

2) The solution to (5.1) is unique in E.

3) Small perturbations in y result in small perturbations in the solution

to (5.1) without the need to impose additional constraints.

If any of these conditions is violated, the problem is said to be

31 A.N. Tykhonov, "On the Solution of Incorrectly Formulated Problems
and the Regularization Methods," Soviet Mathematics, 4, 196 3 3p.1035-i03

32 A.N. Tykhonov, "Regularization of Incorrectly Posed Problems,"
Soviet Mathematics, 4, 1963, pp. 1624-1627.

33 M.M. Laurentiev,"Some Improperly Posed Problems of Mathematical
Physics," Springer-Verlag Tracts in Natural Philosophy, Vol. II,
Springer-Verla 6 , Berlin, 1967.
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ill-Dosed. it is important to realize that uncertainty in data due to

measurement error may cause a problem to become ill-Dosed. Specificall',

this results when a noisy measurement of y produces a waveform which does

not belong to the space Y.

When (5.1) was introduced, it was assumed that the operator X was

known exactly. When there is uncertainty in X, in addition to uncertainty

in y, the problem is said to be well-posed in the wide-sense provided

condition (3) is generalized to require that the solution h depends

continuously on both X and y (i.e. small perturbations in both X and y

should produce only small perturbations in h). For example, in linear

least-squares problems where (5.1) is a matrix equation in a finite

dimensional space, the solution is given by

h - (XT x31 xT y. (5.2)

Since the generalized inverse of a matrix does not depend continuously

on its matrix elements, the problem is ill-posed in the wide sense.

Interestingly enough, this problem is well-posed in the

narrow sense. If the determinant of the matrix is very small or

the condition number (IX 11 jjX- 1I ) is very large, then the problem

is numerically ill-conditioned (34]. Another example of an ill-

posed problem is the integral equation of the first kind.

Hadamard introduced the notion of a well-posed (correct, properly

posed) problem at the beginning of this century when he studied the

Cauchy problem in connection with the solution of Laplace's equation

[32]. He observed that the solution did not depend continuously on the

data. On the basis of this, Hadamard concluded that something was

34 M.Z. Nashed, "Some Aspects of Regulariaztion and Approximatiou
Solutions of ill-Posed Operator Equations," Proceedings of the

1972 Army Numerical Analysis Conference, pp. 163-181.
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wrong with the problem formularion because solutions exhibiting such

type of discontinuous dependence do not correspond to physical systems,

i.e. they do not arise in the study of natural phenomena. Other mathe-

maticians of that time, such as Petrovsky, also reached the same

conclusion.

Mathematicians, such as Hadamard and Petrovsky, reasoned that the

mathematical models associated with the ill-posed problems must be

incorrect. However, today it is recognized that their definition of

a well-posed problem is lacking. In fact, using that definition, many

"inverse" problems of mathematical physics are ill-posed. This includes

most radiation and scattering problems in antenna theory.

In order to avoid difficulties associated with the original definition,

Tykhonov suggested that the three conditions be restated differently. in

addition to the metric spaces R and Y and the operator X, let there be

given some closed set H C.E. We call the problem for the solutionc

of (5.1) properly posed according to Tvkhonov if the following conditions

are fulfilled:

1) It is required that the solution h exists for some class of data

y and belongs to the given set Hc, h c 

2) The solution is unique for the class of solutions belonging to H .c

3) Arbitrarily small changes of y which do not carry the solution outside

the metric space H correspond to arbitrarily small changes in thec

solution h.

We denote by HA the image of H after application to the space H of
c c

the operator X. Requirement 3) can now be restated in the following

manner,
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3) The solution of equation (5.1) depends continuously on the right-hand

side v which Ls a member of the set HA.
C

Tf TA is a compact set, the follou-ing statement holds. If equation
c

(5.1) satisfies the recuirements 1), 2) of a well-posed problem due to

Tykhonov, then there exists a function a(7) such that [321

a) a (T) is a continuous nondecreasing function with a(O) - U.

b) For any hI , h, C H satisfying the inequality d(XhI , ih 2 ) < E,

then d(h , h,) <a (:)

Thus the requirement of continuous dependence is satisfied i- 1) and 2)

are satisfied.

We note that, if a problem is properly posed according to

Tykhonov and we replace the metric spaces H and Y by their subspaces

H and HA, then the problem becomes properly posed in the usual sense.
c c

The necessity of examining spaces. E, Y toget.her with Rc SA is

due to the fact that in real problems the errors committed in the

determination of the right-hand side y, usually lead to 7 outside of

H'. The consideration of the problem according to Tykhonov's formulationc

gives the possibility of constructing an approximate solution with a

certain guarantee4 degree of accuracy in spite of the fact that an

exact solution of (5.1) with approximate data either does not exist

at all or may strongly deviate from the "true" solution.

The new set of three conditions may be summarized as follows.

The first condition guarantees the existense of X in the sense that

a solution may proceed by choosing a complete basis from the compact

set H in order to project y and Th (for b E H ) into HA . The
c c

uniqueness of the solution is guaranteed by condition two. Condition

three requires the continuity of the solution in the space H
c



ie:.ar. ill-posed problem, :vkhonov has regularized

-he problen by redefining what is meant by an acceptable scution.

Basizally, the idea is to make constructive use of the notions

we have with regard to a physical problem by which we determine

a certain class of acceptable answers having more-or-less

acceptable magnitudes and degrees of smoothness. Regularization of an

ill-posed problem need not be confined to the method of Tykhonov.

Various schemes proposed in the literature have involved one or more

of the following concepts: (34]

a) a change in the definition of a solution

b) a change in the space to which the solution belongs

c) a change of the operator X

d) the introduction of regularizing operators

e) probabilistic methods or well-posed stochastic extensions

of ill-posed problems.

Note that it may be possible to regularize an ill-posed problem

with respect to one set of variables but not another. Thus, the choice

of piecewise triangles or piecewise sine functions as a basis for

expanding the current distribution on an antenna by the method of

moments results in a regularized ill-posed problem with respect to the

current distribution on the antenna structure. However, the problem

is not regularized with respect to chaoge because the chaPge distribution

obtained in this manner is discontinuous. As a point of interest, the

method of moments regularizes an ill-posed scattering or a radiation

problem by the introduction of concepts (b) and (c).

In a system identification problem, the objective is to find the

impulse response h(t) of a linear time-invariant system when the input
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x (:1 and tie output da:a vrt to a system are know. The input-ourput

rela:ionsnhi for a causal system is described by

v ( t ) - x ( t - -. h ( ) d 7 - X h

In pro.iems arising in system identification we are usually certain

of the existence of the function h(t) that appears in the integrand in

equation (5.3). Its uniqueness can also be guaranteed. However even if the

solution exists and is unique, eq. (5.3) can have for a specific X a

peculiarity which makes the problem an incorrectly posed one. This

peculiarity arises from the "smoothing" action of the convolution operator X.

This is illustrated with the following example.

Consider two continuous functions h (t) - h(t) and h2 (t) - hi(t) q C sin wt.

It is clear that even for a very large value of C, we can choose

sufficiently a large value of w such that the difference between

Vl - Xh and y2 - Xh is less in absolute value than any previously given
1 2

(arbitrarily small) number E, i.e the operator X "smoothes" out a very

intense, but adequately high-frequency component, to an extremely small

level. The presence of disturbances accompanying the function y(t)

makes the problem ill-posed. For instance, assume that experimental

ccnditions permit agreement of the measurement d(t) with the measured

function y(t) only to within an error 6

O<t d(t) - y(t) j <. (5.4)

It is easy to see that if the operator X of (5.3) has the smoothing action

we have described, then we can always find two functions b1 (t) and h,(t)

whose transforms yl Xhl and y2 Ta 2 both satisfy (5.4). Accordingly,

there are at least two different functions that satisfy (5.3) with d(t)
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measured bv expermec: ZO 1,6.r n ar. error i. Iz fact, there exists an

-i:e set - suzm funczon, whose me=bers may differ fra= each other

bv as --.. as we r..ease .: 4s in tnas situation that the "incorrectness"

t :ee o.-oen :.- a::o >. a:t.'alll lies.

az:era r::ems :.7e s~:tation is not that severe due to the

a~g~ ~a~ec ne gLerm- n ' -jkrl/-,.

Supoose aov e measured funct±on is d(t) - y(t) + e(t) where e(t) is

the ncse 3: :-e ss-em. -he noise is assumed to be a stationary

randoz process -.-- zer: mean and correlation function O(T).

The soluti.on :n the problem

(5.5)

is formally obtained in terms of Fourier transforms of the output and

input by mans of the expression

Z-- -1 (5.6)
-0

whexe the symbol denotes the Fourier transform of the corresponding

function. Of interest is the variance of the function h(t) when instead

of y we use d - y + e in (5.5). The variance is derived in t351 as

= -f ± L ~(5.7)

where 6 (W) is the power spectrum of the noise. Note for finite energy

signals that

I;E ---- o ,  - - - (5.8)

In order that the variance of the solution remains finite, the power

spectrum 4')of the noise must fall off sufficiently rapidly as l(t-9-

35 V.F. Turchin at al, "The Use of Mathematical Statistics Methods
in the Solution of Incorrectly Posed Problems," Soviet Physics
Uspekli 19, 1971, pp. 681-703.
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This imposes severe restrictions on the class of processes e(t) that are

admissible as noise. Commonly, these conditions are not satisfied; since

the noise is usually assumed to contain a background "white noise" component.

Consequently as t the spectrum ( ) approaches a nonzero constant

limit. Then the variance in (5.7) is infinite. Hence,unsatisfactory

solutions are obtained when the experimentally found function d(t) is

substituted for y(t) in (5.5). The source of the difficulty is obvious:

the high frequency components of d(t), which arise from the presence

of noise and which are not present in the true function y(t), produce

large oscillations in the solution.

It is useful to examine the situation needed for (5.5) to be a

correctly posed problem in the presence of white noise. In particular,

if 'R[w) is a rational function, the numerator polynomial must be of

higher degree than the denominator polynomial. This requires in x(t)

the presence of singularity functions such as doublets, triplets, etc.,

all of which have infinite energy.

The classical Wiener problem is also ill-posed. The solution is

determined from the orthogonality principle, which states that the linear

m4-4- mean square error estimator is chosen to make the error orthogonal

to the data. However, the solution is not unique because, in general,

other estimators which are also orthogonal to the data can be added to

the solution without upsetting the orthogonality condition.

Maximm likelihood, minimum variance, and maximum entropy spectral

estimation regularize what would otherwise be an ill-posed problem by using

statistical techniques to estimate the solution as opposed to solving for
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an exact solution. The main feature of a statistical regularization scheme

is that an estimation "rule" is prescribed for the observed data. Given the

noisy data, one simply applies the estimation "rule" in order to achieve

the estimate. The quality of the estimate depends on the goodness of the

estimation rule chosen as well as the accuracy of the a priori knowledge

concerning the statistics of the underlying process. This leads to the

replacement of the exact solution of the equation by an approximate

"regularized" solution. Different strategies, both optimal and suboptimal,

may be suitable for different problems. However, they all result in a

statistical regularization of the problem and, in general, yield estimates

of varying quality.

One disadvantage of the statistical regularization approach is that

considerable a priori information is usually needed if a particular

strategy is to be successfully applied. Nevertheless, the following

advantages hold:

First, the probabilistic approach is the natural way to describe

measurement noise which is often responsible for a problem becoming ill-

posed.

Second, the probabilistic method allows more complete use of previous

experience, by including it in the a priori distributions.

Third, when there is no such experience, the probabilistic method

still allows one to proceed by making use of extremely weak assunptions

about the unknown processes.

The various techniques discussed in section III describe various

strategies to regularize in a statistical way the ill-posed system

identification problem.
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The pencil-of-functions regularizes the identification problem by

generating the compact set H to which the solution belongs. This is achieved
C

by introduction of the operator S which integrates a function from - to t.

For a discrete-time system the integral reduces to a sum. The pencil-of-

function method makes use of the simple sequence

The sequence is indexed on k and ri - exp (J2 7 f) and {A.} are the residues.

Application of the operator S on 'l reduces to

S Ai rk/( - ri ).

It follows that [1 1(l ri )S] t - . It can also be shown that

the operator S maps the space onto itself while preserving the poles of the

sequence. It is because of this factor that the poles and zeros obtained by

this method are extremely stable, reliable, consistent and accurate.

The vectors which span the compact set Bc to which the pole ri

belongs are generated by successive applications of the operator

Ll - ( 1 - ri )S I to . ote that in this operator r i is an unknown

quantity. The r i's are obtained from the linear dependence of the spanning

vectors of the compact set R . The detailed mathematical derivations may bec

obtained in [361.
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V1. PENCIL-OF-FUNCTIONS METHOD

A useful mathematical entity arises by combining two given func-

tions defined on a common interval together with a scalar parameter

as

f(t,X) - Xg(t) + h(t) (6.1)

The entity f is called a pencil of functions where g(t) and h(t) are

parameterized by X. For example, if h(t) is composed of

h(t) - A expC-st)

and

g ( I ht)dt - =-eC-st) [for s > 0)

then the pencil Xg(t) + h(t) can be formed. The pencil of functions

is linearly dependent only when X - -s. Therefore, the value of X

can be computed from h(t) and its integral using their inner product.

The main result thus concerning the linear dependence of the pencil

sets is that the parameter X satisfy a polynomial equation. The de-

tails of this method may be found in references [36-38). An

advantage of this technique is the generation of the successive

36 V.K. Jain, "On System Identification and Approximation," Florida
State University, Tallahassee, Eng. Res. Rep., SS-I 1, 1970.

37 V.K. Jain, "Filter Analysis by Use of Pencil of Functions: Part
I & II," IEEE Trans. on Circuits and Systems, Vol. CAS-21, No. 6,
September 1974.

38 T.K. Sarkar et al, "Suboptimal System Approximation/Identification
with known Error," Report No. AFWL-TR-77-200 on Contract F33615-
77-C-2059, September 1977.
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integrals of the function. So assuming the function itself is in L2

space, then the set generated by the successive integrals forms a

compact set in LI space. This is how the ill-posed system identifica-

tion problez is regularized by converting the function to L . Since

we are int.arested first in finding the values of A for the pencil, genera-

tion of successive integrals of he function forces the solution to

belong to the compact set spanned by the integrals. That is why it

has been possible to estimate an error bound on the location of the

poles [36-38].

Another added advantage of formulating the problem this way is

that the effect of conventional filtering can be greatly reduced. This

can be achieved through successively smoothing the function by passing

it through a band pass filter with transfer function, [(as + b)/(cs + d)],

as opposed to pure integration. The integrator is then a special case

of a band pass filter for a - d - 0 and b - c - 1. This can increase the

frequency resolution of the indentification technique.

Moreover, as the poles are obtained from a polynomial equation

whosc coefficients form the minors of the Gra-mian of the. pencil of

functions, noise corrections can be done easily. Thus, in order to

make the estimate of the poles unbiased, the entries in the gram-matrix

can be altered in a systematic way to yield an unbiased estimate for

the poles (25,26].

As an example consider the transient response of a conducting

pipe tested at the ATRAMAS-I EP simulator. The conducting pipe is

10 m long and 1 m in diameter. Hence, the true resonance of the pipe

is expected to be in the neighborhood of 14 MHz. Also, the pipe has
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been excited in such a way that it is reasonable to expect only odd

harmonics at the scattered fields. The data which have been measured

are the integral of the E-field and hence is available in terms of a

voltage. Thus, in addition to the frequencies of the conducting pipe

one should also observe a very dominant low frequency pole. The same

transient data as depicted in Figure 2 {Figure 10 of reference [38] }

is used for analysis. The results for a fifth and a seventh order

system are as follows:

For n - 5, the poles in radians/sec are

C-0.0029 i J0.083) x 109 C-13.33 MHz)

C-0.0428 J jO.217) x 109 C-35.20 MEzj

(-0.0098 ) z 109 C- 1.56 MEz)

For n 7, the poles in radians/sec are

(-0.0058 jO.084) x 109 C-13.40!,Hz)

(-0.0270 i JO.219) x 109 (-35.10 MEz)

(-0.0270 J jO.550) x 10 9  (-87.60 1Mz)

(-0.0012 ) x 109  (-0.19 MHz)

It is interesting to observe that the real pole due to the- in-

tegrator has been obtained. This pole is a very dominant pole as the

data was recorded after having passed through an integrator.

The above results display a dynamic range of approximately 1000:1 for

the values of poles of the conducting pipe.

Next the data were differentiated to get rid of the undesirable

dominant pole of the integrator. The differentiation was done numerically.

For a fourth and a sixth order system the above results have been
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recalculated as follows:

For n = 4, the poles in radians/sec are

(-0.0026 + jO.086) x 109 (-13.70 MHz)

(-0.0480 + jO.235) x 109 (-37.47 MHz)

For n - 6, the poles in radians/sec are

(-0.005 + JO.083) x 109 C-13.23 MHz)

C-0.034 + jo.221) x 109  C-35.59 fiz)

(-0,071 + JO.406) x 109 (-65.9 M z)

Here a good approximation to the poles has been obtained with only

four poles. Also, there seems to be a good agreement in the pole

locations obtained from the original integrated data and the numeri-

cally differentiated data. It is also interesting to observe that

indeed the poles are occurring approxd.iarely at odd harmonics of the

fundamental. Hence, the pencil-of-functions method does provide

stable, reliable, consistent and accurate values of poles from noise

contaminated measured responses of electromagnetic systems.

In Figure 3, the true numerically differentiated data is

plotted against the reconstructed response of a sixth order system.

The plot has been normalized to unity amplitude. It is interesting to

note that there is a close agreement even in the very early times of

the two waveforms.
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experimental data

3 reconstructed response

-m in, •nscd-c , .3o"- - , 4

.4 ." 3 
, 

1,.. V.+ '7 4-. ! 5 . :J . :% .''

Fig .  3. True Response Vs. Reconstucted Response of a Sixth /rder System for

a 10 z Long 1 m Diameter Conducting Pipe.
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VII. DISCUSSIONS

The previous sections demonstrate that the use of a proper

mathematical model is extremely important in regularizing an ill-

posed problem. It has also been shown that the pencil-of-functions

differs radically from the other existiLg schemes of finding poles

and residues of a finite length noise contaminated record. It is

because of the use of a completely different regularizing scheme

that analytical error aounds on the pole locations are possible.

This is why reliable, consistent, stable and accurate results for

the poles and residues have been obtained for this method. Thus,

the pencil-of-functions method shows a great promise for the analysis

of poles and residues from measured transient responses of a

finite-size conducting body in free space.
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